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Mathematics: Mother of the Universe 

- by Viktors Berstis - 
 

Abstract 

 
A logical explanation is presented describing how our Universe could exist, as we experience it, without using any 

preexisting physical space, matter or any other seed. Consequences are suggested, along with artifacts we might look 

for in Nature. In addition, several philosophical questions have simple answers in the context of this explanation. 

Summarizing video available here:  https://youtu.be/tlJ3f5i6F9M 

 
”… Getting real existence from pure logic is just too much of a  

conjuring trick. That sort of hat cannot contain rabbits.”  
- Nicholas Rescher, The Riddle of Existence, 1984  

 

 

 

1. Introduction 

By some definitions, the term "universe" includes not just what we can perceive (even indirectly 

using tools), but all other places or things, that may not be in any way connected or similar to our 

sense of our natural surroundings.  Instead of using that all-encompassing definition, I define a 

"universe" (note lower case "u") as everything that is connected via the transitive closure of all 

information or causal connections.  Transitive closure just means that everything that is even 

indirectly connected is included.  For example, the distant galaxies, that we see because of light 

traveling from them into our telescopes, are considered to be part of our Universe.  If in those 

galaxies they perceive something that is beyond our viewable horizon, those somethings are still 

part of our Universe.  I use a capital "U" in the word Universe when referring to our own 

universe.  Other universes have no visibility or communication with our universe, even 

indirectly.  Our Universe is the one in which we reside and by the above definition; we cannot 

communicate with any other universes.  

 

The “Big Bang”, many worlds (Everett 1957), Harrison’s multiverse (Chown 2002, 110-112), 

Smolin’s self-reproducing universes (Chown 2002, 112-114), and other models abound (Rees 

2001), proposing to explain how the Universe was created. However, as one works backward, 

they all assume some sort of pre-existing seed, pre-existing space-time, infinite recursion, 

fluctuating vacuum, or some creating entity, which the theories don’t explain.  If someone were 

to claim that X created the Universe, the obvious question would be “what created X?”  To stop 

this induction, we need to find an X, which needs no creation.  Mathematics was early seen by 

the Greeks as important in the nature of the Universe, but the approach of resting the creation of 

the Universe entirely on mathematics is treated “with distaste” (Barrow 2000, 286) by 

philosophers and physicists for thousands of years.  What has been missing is a plausible 

explanation of how mathematics alone could suffice as the seed needed to create our Universe.  

This explanation would most likely be much like a tautology or self-evident argument because it 

would not require a pre-existing seed or further antecedent.  I propose to describe a conjecture 

that explains the existence of our Universe in terms of mathematics alone.  Furthermore, I have 

found that this explanation produces plausible, sometimes disturbing, answers for many difficult 
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philosophical questions, and even suggests the possibility of certain physical phenomenon that 

may be present in the nature of our Universe. 

 

Briefly, the conjecture concludes that our Universe exists in the same manner that a number, 

such as π (pi), exists.  The first objection might be that π is a static entity, just a point on a 

number line.  I will argue that our sense of time, space, matter and energy can all be reduced to 

such a static number.  The entire conjecture consists of several such hurdles of understanding, 

each of which I will address.  More explanation will be given about using mathematics as a 

starting point, because it is the one “thing” that need not be created to “exist.”  A simulation of 

an entire universe can be represented as simply as one result in mathematics. Intelligent life, such 

as mankind, can evolve within the simulation of a sufficiently rich universe. The universe would 

seem “real” or “physical” to all of the entities inside the simulation. Physical existence is a 

perception dependent on the perspective of the observer. The implications are that there are an 

infinite number of universes and an infinite number of ways for each to “exist.”  Such a 

conjecture would be difficult to test for several reasons.  First, the conjecture explains the 

existence of every universe, and thus there would be no counterexample universe that might be 

inconsistent with the conjecture.  Second, we are most probably unable to recreate a sufficiently 

complete model of our universe within itself, in effect providing a demonstration of a positive 

proof.  However, we are able to observe and experiment with smaller "universes" or tiny portions 

of our Universe, via computer simulation for example.  Further implications do suggest some 

interesting artifacts in nature that have some probability of being found in our Universe.  Finding 

any of these would support this conjecture, but the lack of them would not be able to invalidate 

the conjecture. 

 

Several age-old philosophical questions have simple answers in the context of this conjecture. Of 

all of the possible ways that this Universe might have been designed, why, for example, does it 

have 3 space dimensions, one time dimension, four types of forces, quantum mechanics, 

relativity, a small set of elementary particles, and why are various constants such as the 

gravitational constant, the speed of light, the charge on an electron, or the mass of an electron set 

exactly at their specific values?  And, why is matter and energy distributed in the Universe 

exactly the way it is, with a Milky-Way galaxy containing a small star about which a blue planet 

sustains life?  As a mathematician, one would say the probability of having our Universe exist 

rather than the infinity of other possible universe configurations that might be imagined, vanishes 

to zero.  Next, one might wonder whether all possible universes exist or none.  Would it not be 

simpler to build no universes? Yet we are here.  The question, “Why is there anything at all?” 

was asked by Gottfried Leibnitz and many others.  Where is our Universe?  This paper produces 

answers to these and other questions.  I will explain that in certain senses, and not paradoxically, 

all of the following are true: 1.Ultimately, there is no physical existence – it just seems physical 

because we are viewing it from within the Universe,  2. Our Universe exists within mathematics, 

3. An infinite number of universes exist, and more. 

 

2. Physics and Simulating the Theory of Everything 

A “Holy Grail” of science is to find the “Theory of Everything.” This theory would explain how 

the Universe operates from its beginning, if there is one, to its end, if there is one.  Let us assume 
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that this theory specifies a set “A” of laws, rules, procedures, and initial conditions, which are 

needed to explain and predict in principle, if not practice, how everything behaves in our 

Universe.  So far, scientists have discovered many important laws that quite accurately describe 

this Universe. Examples include the laws of motion in space-time, how four forces of nature 

seem to affect everything, the equivalence of matter and energy, modifications to “classical” 

rules per quantum mechanics and per the theory of relativity, and so forth. As we make more 

detailed measurements of our Universe, the scientific method makes it necessary to revise certain 

laws to reflect new understandings about what has been observed. A prime example is Einstein’s 

relativity, correcting errors in Newton’s laws of motion, most noticeable when relativistic speeds 

are approached. More refinements and additions to these laws are necessary before we will be 

satisfied that we have a complete set A. 

 

The laws in assumption A, that we have found in science so far, might be stated as differential 

equations, which with suitable initial conditions predict the behavior of a part of the Universe 

being studied. There appear to be other equivalent mathematical ways to express these laws, for 

example, using “string theory,” “loop quantum gravity,” “cellular automatons,” or probably 

many other undiscovered mathematical methods. Some of the laws might not be suitable for 

formulation as differential equations and may require other techniques. Humans may never 

discover all of the laws governing our Universe, perhaps because the set is too large, or because 

some features may not be fully observable by us in a way that permits deducing them with 

certainty. For the purposes of this conjecture, it is not important how large set A is, and suffice it 

to hypothesize that there is some set of laws, however large, that describe the way this Universe 

works. For initial simplicity, let us assume there are only a finite set of laws in A and that our 

Universe is finite.  I will later show how these restricting assumptions might be relaxed. 

 

A description in terms of differential equations does not lend itself to ready solutions which 

show how matter and energy behave except in the most simple of cases. For example, we do not 

have closed form equations that show how three point masses move in space when they interact 

only with gravity. As soon as we add more forces and particles, the situation becomes hopelessly 

complicated. Physicists typically make all kinds of assumptions: zero friction, point masses, 

often consider only the first or second order terms in their equations, and others, in an attempt to 

simplify the problems to make some sort of study tractable. 

 

The difficulty in exactly solving the equations, which encode the laws of the Universe using 

conventional mathematical notation, grows immensely with the number of variables (number of 

particles and size of space) being considered. Scientists turn to simulations to solve problems 

that are too difficult to solve in closed form. If one is interested in determining how the 3-space 

position of a particle changes over the time axis, one can start by chopping the time axis into 

very small time increments. For each increment, the sum of all forces on that particle are 

calculated, and then the resulting change in velocity is applied to the particle’s initial velocity at 

that time increment, and a new trajectory is computed to find where the particle will be at the end 

of the time increment. This can be calculated for all particles and points of interest, and repeated 

until the desired time or future event is reached. The method looks much like integration and is 

used to calculate trajectories for spacecraft traversing our Solar system and can equally be 

applied to particles. Especially for small particles, quantum effects must be included in the 
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simulation. A later section will deal with the problems of indeterminism from quantum processes 

and warping of space-time. 

 

It would be computationally prohibitive for us to compute the exact future of our Universe. If the 

Universe is about 20 billion light years in diameter, and if the simulation requires 3-space to be 

divided into cells, which have a size on the order of the Planck length (
35106.1 −×  meters), then 

this would give approximately 
18510  cells, into which the entire space of our Universe would be 

subdivided. The Planck length, named after Max Planck, is conjectured to be the smallest 

possible length of space, implying that space may consist of tiny discrete cells.  It is about 
2010  

times smaller than a proton, so even for microscopic volumes of space, the task of exact 

simulation would be enormous. Computers represent numbers as scaled integers with a specific 

maximum size. These integers would need to represent at least 185 digits of accuracy, and 

probably much more for a full Universe simulation. With a sufficient number of time step 

increments, tiny round-off errors accumulate when computing with integers rather than exact 

values. These accumulated round-off errors can add up over many computation steps and 

eventually lead to substantial error, sufficient to not show the true behavior of what is being 

studied in the simulation. To reduce the accumulated round-off errors, more precision is used in 

the computations, and finer subdivisions are used for the time increments until accuracy 

sufficient for the scientist’s purposes is achieved. 

 

The important point is that with a hypothetical computer much larger than our Universe, and 

using computation time much longer than the known existence of our Universe, it would be 

theoretically possible to compute the behavior of our Universe with any desired level of accuracy 

using the laws in assumption A. Some may object to the prior claim on the basis of chaotic 

behavior or laws that specifically introduce random outcomes. I will account for these later. 

However, to increase accuracy, space-time measurements could be subdivided until the required 

precision is reached. We might, for example, further subdivide our smallest unit of measure 
20010 -fold and use integers with at least 

20010  digits of precision. Obviously we could not even 

store one of these integers in our own known Universe, but that does not matter, as we shall see 

later. And, even with this vast increase in precision, we still have a finite description of the 

Universe under the assumptions we have used thus far.  

 

3. Outline of a Simulation of Our Universe 

I will briefly, and superficially, outline how a classical simulation of our Universe might be 

designed, for those not so familiar with such methods.  First, one might devise an appropriate 

coordinate system. In our Universe there seem to be three space coordinates and one time 

coordinate, although one could argue that time is not actually a coordinate.  String theory 

suggests that there might be quite a few more short, looped coordinates, but we will ignore those 

and other complications for simplicity of illustration.  The coordinate system is given a minimum 

measurement increment, on the scale of the Planck length for the x, y, and z axes, and Planck 

time for the t axis.  Then, each of the cells is mapped to a computer memory location. Even 

though computer memory is essentially linear, any number of dimension arrays can be mapped 

to this linear memory.  For infinite dimensions, various diagonalization techniques can be used to 

map multiple dimensions to one memory dimension. Thus any number of space dimensions can 

be mapped to a computer memory.   
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At each memory location, various values are stored about the cell at that coordinate according to 

whatever is specified in the rules in A, which describe the operation of the universe.  For 

example, values stored might be scalar or vector values for various fields, probability of finding 

a specified mass and momentum in the cell, and so forth for all other required properties.  An 

additional virtual coordinate s, corresponding to the computation steps should be mentioned.  At 

each computation “step,” the new values for each cell in the coordinate system are calculated and 

stored back into the cells.  One of the computations might involve calculating the sum of all 

force fields acting on a particle in a given cell and adjusting its location and momentum 

accordingly. The computation “time” coordinate s may or may not largely correspond to the 

simulated time t, depending on how the rules in A are formulated.  Time in our universe is really 

a causality / dependency structure rather than a dimension, but discussion about this will be 

omitted here. 

 

The initial conditions for the simulation could be set to simulate the Big Bang, by inserting an 

enormous mass into the coordinate system at the origin, with specific attributes of momentum 

and other characteristics.  As the computation steps proceed along the s coordinate, the 

description of the universe unfolds in the simulated coordinates x, y, z, and t, which themselves 

need to be expanded from a singularity in the simulation, to match the expansion of space. 

 

The procedure outlined here is deterministic.  If non-deterministic rules exist in A, then these can 

be simulated as well.  For each point at which a rule suggests a range of alternative outcomes, 

our simulation can proceed by exploring every alternative.  The entire contents of the coordinate 

space are copied and simulation continues from each copy, representing each of the possible 

alternatives.  Of course, as multiple non-deterministic decisions are made on top of others, the 

number of copies of the coordinate space and its contents grows exponentially.  Readers may 

recognize the similarity of this simulation procedure with that of handling quantum uncertainties 

using Everett’s (1957) many worlds interpretation of quantum mechanics.  Briefly, Everett 

contends that the Universe splits at the moment of measurement, leaving us in one of the split 

universes to perceive the quantum outcome. More generally, we can use the interpretation that at 

each moment, the Universe splits into multiple Universes corresponding to all possible 

combinations of the results of quantum effects.  Thus the history of the universe is represented 

by an enormous tree structure containing all possible paths to the future and exactly one path 

backward in time from any position.  The act of measuring simply identifies the Universe in 

which the particular copy of the observer resides.  The approach explains all quantum weirdness 

as well as spooky action at a distance.  The only objection is that this approach has been 

considered "wasteful" because of the enormous number of split Universes that the approach 

requires.  However, we will see that mathematics provides the needed infinities, which easily 

handle this "wasteful" continual splitting of the Universe, as will be shown later.  Incidentally, 

this also explains, in combination with the anthropic principle why our Universe is not 

completely symmetric.  We are simply in one branch of the tree of split universes, each branch 

breaking symmetry in its own way. 
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4. Watching a Simulation 

Some popular video games are implemented using simulation methods. Most computer games 

have input and output exchanges with the human player. Human interaction is not always 

necessary to make an interesting game. For some game simulations, one may set the initial 

conditions and just watch to see what happens. Many of the “Sim” series of games (SimFarm, 

SimAnt, SimCity…, trademarks of Electronic Arts Inc.) are of this nature, although there is 

opportunity for the user to intervene at any time.  

 

Some believe the Universe is a giant cellular automaton and all we need to do is find the rules, 

which govern it.  Actually, a very simple cellular automaton can in turn simulate any other 

cellular automaton, albeit, inefficiently.  James Horton Conway, a remarkably inspired 

mathematician, invented the “Game of Life,” (Gardner 1970) which is a cellular automaton -- a 

simulation in a tiled, two dimensional space of “full” or “empty” square cells, obeying a set of 

very simple rules. The birth rule: if a cell is empty and has exactly 3 of its 8 neighboring cells 

full, then the cell becomes full on the next computation step. The under- and overcrowding rule: 

if a cell is full, it stays full on the next computation step only if 2 or 3 of the 8 neighboring cells 

are full. Initial conditions are set by making some cells full and then seeing what happens in 

successive computation steps.  What happens is very interesting and ultimately profound. First, it 

turns out that the Game of Life is computationally complete. This can be shown by implementing 

what is called a “Universal Turing Machine” within the Game of Life.  A Universal Turing 

Machine can be shown to be able to compute any kind of algorithmic computation. This means 

any computation X can be translated into a configuration x′in the Game of Life, and the 

execution of the game will eventually (and quite slowly) produce configuration y′  which when 

translated back produces the result Y of computation X. This is much like running the same 

algorithm using different programming languages and computer architectures, yet achieving the 

same results.   

 

One should study any of a number of web sites devoted to the Game of Life. The reader should 

find a recently written book by Stephen Wolfram (2002), entitled “A New Kind of Science,” 

very interesting as well. It explores cellular automata of various kinds showing how they can 

demonstrate the complexities found in nature using remarkably simple rules. The book also 

makes important observations about the concept of irreducible computations: that the outcome of 

some computations cannot be predicted with less effort than actually performing the 

computation.   

 

Our simulation of the entire Universe of 
18510  space cells, using very large integer values for the 

coordinates and properties of those cells, and the rules in assumption A to be applied to these 

cells, can all be theoretically represented by a very large Game of Life configuration, which over 

a very long time shows the behavior of our Universe. 

 

5. Important Observations About Simulations 

The first important observation to make is that simulations are deterministic. If you start with 

exactly the same inputs, including same random number generators, providing inputs at exactly 

the same times relative to the start of the game, and ensuring the same ordering of computer 

instruction execution [1], you get exactly the same results every time you compute the 
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simulation. That is, the computation is deterministic.  Non-deterministic computations can be 

computed deterministically but with much greater effort, by computing every combination of the 

non-deterministic choices.   

 

The second observation is that time t dimension within the simulation is virtual and does not 

necessarily reflect the simulator’s time s, which is really a computation step dimension.  

Simulation time s is not perceived within the simulation. We may run the simulation on 

computers of different speeds, producing exactly the same result, but using different amounts of 

computation time. Furthermore, if the software is so designed, one can stop the simulation part 

way, save the intermediate results, and then resume the simulation much later, producing exactly 

the same result. Within the simulation, we could simulate the concept of multidimensional time 

and still implement the simulation using a single dimension of computation step time s. Entities 

inside the simulation are oblivious to pauses in the computation of the simulation. For example, 

the SimFarm characters are not aware that a child saved the state of their world, and then 

continued it the next day. A particular simulation can be thought of as a movie film. Each frame 

captures the state of the simulated world at each computation step.  This is easy to imagine when 

the computation step dimension largely matches the time dimension being simulated, as it might 

for a simulation of our Universe.  At each simulation step, the characters in the simulation are in 

a state of knowing their history and expecting certain things in their future, yet they would not 

perceive the simulation as being in steps. If we let this simulation run from the start to the end of 

time for the simulated Universe, we have a complete description of everything that happens.  

 

The third observation is that entities inside the simulation are affected by each other, and if there 

is no provision for outside input, they are totally “unaware” of us watching the simulation.  The 

way reality is perceived by an entity depends on if the entity is in the simulation or not.  For 

example, if our Universe were a “SimUniverse” game for a some super-giant “child” within a 

much larger universe, this “child” would see life eventually evolve on the tiny planet that the 

people living there call “Earth”, with those people busy raising their families, doing their work, 

and so forth.  The intelligent “people” within this simulation would think they really feel matter 

and forces, would think they all “exist”, and interact with each other accordingly, yet they would 

be oblivious to the giant “child” watching their world. 

 

The fourth observation is that a simulation has to be rendered only if someone outside of the 

simulation wants to perceive it using their perceptive mechanisms of choice, in our case eyes, 

ears and other sensory organs.  To perceive a simulation from the outside, it must be 

rendered. The computer in the prior paragraph simulating the SimUniverse game would be 

performing its computation steps for every particle and every quantum of energy for that 

universe without any kind of external rendering.  The people and other entities within the 

simulation would still feel their universe is real.  The “child” in the parent universe might have a 

“display screen” for rendering some interesting portion of the simulation, such as the portion 

located on the planet Earth, but that would not affect the perception of the simulated universe by 

the entities within it.  However, the mathematical progression of the simulation is static and 

already determined without actually going through the steps of simulating the simulation. The 

characters at every simulation step inside the simulation are in a state where they perceive 

motion, history, and interactions with the other entities within the simulation.  Yet, we need to 

actually implement the simulation only if we want to view it from the outside.   
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We take the simulation, a mathematical deterministic process, and let that simulation's progress 

rate along s tend to zero, and conclude that even though the simulation thus never gets rendered 

for an outside observer, it still is perceived as normal and real for the entities within the 

simulation, because the simulation is rendered for them within mathematics.  This means, there 

does not need to be something executing the simulation for the entities within the simulation to 

perceive their simulation as "real."  

 

6. Mathematics is Discovered  

Mathematics starts with a set of assumed axioms and deals with the results that logically follow 

starting with those axioms. Various fields of mathematics start with different sets of axioms and 

rules for manipulating them (logic..) and this leads to the concept of counting, adding, geometry, 

algebra, calculus, and so forth. There is a story about a person who was placed in a prison, and 

all by himself, started with simple axioms and discovered his own paths to the same 

mathematical theorems that others had found on the outside. Mathematics, in this sense, is never 

invented, just discovered. If a civilization or intelligence is able to understand counting, sets, etc., 

that civilization will eventually find the same mathematical truths. Even God cannot change the 

fact that 2 plus 2 is 4, or that 7 is a prime number. These are simply an absolute implication from 

a set of axioms, definitions, and logical manipulations. If you alter the axioms, definitions, or the 

logic, you can perhaps say that 2 + 2 is 1 (as in mod 3 arithmetic) but you are then talking about 

a different set of axioms, definitions, and logical manipulations that produce an equally 

immutable set of implications. 

 

The number π (in decimal notation 3.141592…), which is the ratio of the circumference of a 

circle to its diameter, will most likely be discovered by any sufficiently intelligent life, even if 

they do not live in a mostly Euclidian space like ours. There are an infinite number of equations, 

which produce π as their solution. The number π exists whether anyone has discovered it yet or 

not, and whether anyone has written it down in decimal notation or not. In fact, since it is not 

rational, nobody in a finite universe can write it down in full in any integer radix notation. And, 

since it is derived from the pure logic of mathematics, its existence is not dependent on the 

existence of this or any other universe. Anyone sufficiently intelligent will stumble upon the 

concept of the number π as well as many other interesting things in mathematics.   

 

Simulations are computations which can be represented and computed on a simpler form of 

computer called a “Turing machine.” Thus any algorithm implementing any simulation can be 

translated into a program that executes on a Turing machine. It has further been shown that any 

Turing machine program can be represented as a diophantine equation (Chaitin 1999). A 

diophantine equation is an algebraic polynomial with the requirement that the solutions be 

integers. The process of finding an integral solution to an appropriately written diophantine 

equation can be equivalent to computing a Turing machine program. Thus, the computation of a 

simulation can be represented as the solution of a diophantine equation. 

 

7. If π exists, then so does our Universe 

The point of the above is that a simulation of a universe can be represented as the solution to a 

single equation in mathematics.  Similarly π can be represented as a solution to a single equation 

in mathematics.  I claim that our Universe exists exactly in the manner that the number π does. 
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The simulation of our Universe could be one (quite large) solution to the diophantine equation, 

which plays out the solution we are living, if the solution were to be rendered. Note that if we are 

in the simulation, we don’t need to stand back and see it from the outside for it to seem real to 

us. Our perception of something as real or physically existing is relative to our point of 

observation. We feel that our Universe physically exists because we are in it, and it only seems 

to us that the Universe’s physical existence is necessary for ourselves to exist.  It does not matter 

that no physical computer is computing the answer. We don’t need to have the simulation 

rendered. Neither do we need to write down all of the digits of π for it to exist. Nobody needs to 

render our Universe for it to exist. Our Universe is just a very interesting part of mathematics. 

Outside of our Universe, nothing has to exist. No space, no time, no matter, no energy etc. 

Nothing physical needs to be created for our Universe to exist.  We just happen to have 

(obviously) discovered our own Universe because we are in it. We have evolved to the point 

where we are self-aware, intelligent, and now, are possibly aware of the nature of our own 

existence. 

 

Next, I will discuss several implications of the above, and in light of this conjecture, answer 

various philosophical questions accordingly.  I will also discuss how to relax the assumptions 

made earlier. 

 

8. Infinite number of universes 

If our Universe is a solution to a hypothetical set of equations or laws, certainly there are an 

infinite number of these. This would imply that a vast infinity of universes exist, in just the same 

way as ours does. We will never communicate with them and can only conjecture about their 

nature. However, we can render other simple universes within ours by using computer 

simulations, and intercede in those simulations, to communicate with the entities within, e.g. 

interceding in a Sim game. For example, everything from the past to the future of this Universe 

out to infinity or its limits, I consider one universe.  If two universes can communicate with each 

other, then I consider them part of the same universe.  The Everett many worlds interpretation is 

still one universe by my definition since all of the alternative paths are informationally (via 

causality) connected at their root origins. 

 

Max Tegmark's (1998) paper in many ways is very close to proposing the conjecture in this 

paper.  He struggles with the distinction between physical existence and mathematical existence.  

When one realizes that physical existence is relative to the observer, and not an absolute 

property, the difficulties disappear. He also looks for a statistical way to make the conjecture 

testable. This assumes our “physically existing” Universe is in some way preferred over the set 

of all universes. Thus the argument succumbs to the human desire to view our home as the center 

of everything.  I claim the conjecture explains the existence of all universes, and thus is not 

testable. 

 

9. The rules in assumption A may require infinite computation 

I have assumed that a finite simulation is sufficient to describe our Universe. Even if every point 

in the finite Universe is affected by every other one, this represents a finite (but large) number of 

computations. What if we relaxed the assumption about a finite universe?  Space may be 

continuous rather than quantized. The set of rules in assumption A may be infinite. Perhaps 

infinite precision or infinite computation is required. If this Universe is the solution to such a 
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hypothetically infinite mathematics problem, then that does not matter. Nobody has to write 

down or render the solution for the solution to exist. Nobody has to write down the problem for 

the problem to exist.  We don’t have to actually evaluate the infinite number of terms in a series 

giving π as an answer for π to exist. Only in mathematics can we deal with infinite problems and 

solutions. If we find that our Universe takes infinite computation to follow rules A, this may be 

more evidence that the universe is simply a part of mathematics.  We should take up the 

challenge to further investigate infinite algorithms and infinite Turing machines, rather than 

dismiss them as intractable. 

 

The rules in assumption A may in fact be an infinite set of rules and use infinitely complicated 

algorithms. Some mathematically undecidable problems may be decidable if you have infinite 

time to find the answer. It may be that some features of our Universe might seem to take infinite 

computation to resolve, yet a mathematics based universe would have no difficulty with these. If 

this were the case for our Universe, it would be evidence that our Universe is in fact a 

hypothetical solution to some problem defined by the rules in assumption A, while it would 

appear to be impossible for us inside the simulation to understand.  

 

10. The rules in assumption A may not require infinite computation 

There is a conjecture that space itself is quantized at the Planck scale. If this is so, then it might 

look like space in a cellular automaton. Loop quantum gravity proposes a structure with a 

resemblance to a cellular automaton. In addition to rules defining the interactions among the 

cells, there may be rules for creating and destroying cells in the automaton space, which would 

account for the expansion, contraction and bending of space-time. Edward Fredkin (1990) and 

others conjecture that our Universe is in fact a cellular automaton. If our Universe is in fact 

described as a cellular automaton, then the limit to the speed of communication, that of the speed 

of light, may be evidence that there is finite computation involved in the simulation of our 

Universe, at least locally. In the Game of Life, the maximum possible speed of communication is 

one cell per time step and corresponds to the “speed of light” in the game’s cellular space.   

 

Similarly, our Universe may be driven by rules that limit the influence on each tiny Planck 

length sized cell to that transmitted to it by it’s immediate neighboring cells within one 

simulation step. Long distance forces, which influence any cell, may be transmitted by altering 

the attributes of cells, one neighboring cell at a time, until the influence reaches the destination 

cells. This would be consistent with the conjecture that the minimum time increment in our 

Universe is approximately the Planck time.   

 

We may find that experiments with quantum computing reveal that there is a fixed amount of 

computation required to explain the quantum world at the smallest scales. If the rules in A are a 

finite set, are local, and operate like a cellular automaton, requiring finite computation per cell, 

and if space and time have finite extent, then the computation representing our Universe could 

also be finite. 

 

11. Looking for Evidence 

If mathematics runs this Universe, one might look for unexpected evidence of this. Since 

computation time required to render the Universe is of no concern to those inside a simulation of 

the Universe, it may very well be possible that infinite calculation is required at every point in 
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our Universe to fully obey its laws in assumption A. Thus, we might try to devise an experiment 

to tap into the result of an infinite calculation in the workings of the Universe. If we could set up 

an experiment that would compute a result that should take an infinite amount of time to 

compute, we may find something that appears to be a mathematical oracle. Quantum computing 

may be on the verge of just such a discovery. We may be able to tap into the mathematics that 

“runs” our Universe and compute something that should take an infinite number of steps in a 

classical computer.  

 

Another approach is to tap into the possibly infinite precision behind the mathematics that runs 

our Universe.  Consider how accurately photons can travel across most of the known Universe 

and still converge properly in phase at our telescopes. There may be problems in actually finding 

an oracle based on infinite precision because our measurement accuracy may be constrained by 

the uncertainty principle and we may not be able to cheat our way around this constraint. 

 

12. Assumption A may consist of an infinite set of rules, including ones which have not been 

used yet in our Universe. 

Another consequence could be that there is a hidden law that says after N years of our time, X 

happens. X might be some arbitrary rule such as “any proton in a particular cubic meter of space 

Y will be turned into a photon.” This would look like a momentary violation of physical laws to 

any scientist observing the event. Scientists have not, to my knowledge, encountered such 

anomalies in our Universe, unless each quantum probability decision is such a law.  X might be a 

doomsday scenario, or a reset back to the big-bang, or what looks like an “act of God.” Although 

all of these might be possible in any universe, it is quite improbable in our Universe. Life, as we 

know it, would probably have experienced many more severe extinctions if such events 

happened often. Such apparent violations of the steady rules would most likely create such chaos 

in the operation of our Universe that there would be too little stability for life to evolve as far as 

it has on Earth. If one goes back to the game of life example, one sees how a very tiny 

perturbation, such as adding a single dot or removing a dot, usually ends up destroying all 

structures around the dot, unless the dot is somehow isolated. 

 

At this point it might be worth noting that science tries to develop theories that could predict the 

future.  However, there is never any absolute guarantee that any conjecture will be obeyed in the 

future, even if it seems to have been obeyed on all occasions in the past.  Similarly, we can never 

be certain that some previously unused rule X may come into play.  However, the probability of 

this occurring becomes smaller as the consistency of a universe is repeatedly demonstrated. Our 

Universe appears to be one of the lucky ones, which have seemingly stable rules in A, which 

seem to have been conducive to the evolution of life on Earth. 

 

At the other extreme, assumption A may contain an infinite number of rules that very explicitly 

state in fine detail how every particle in the Universe should move and behave over all time, 

rather than specifying a small set of physics laws. This would be analogous to a very detailed 

movie script of our entire Universe, sitting on some infinite giant’s shelf.  Such a universe would 

most probably appear to be governed by seemingly random rules, and seem non-deterministic. 

However, for each algorithmic rule based universe, there exists a scripted universe that produces 

the same result.  Perhaps our Universe is a combination of algorithmic rules in A for large-scale 
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events and scripted rules for small-scale events. Together these could account for the large-scale 

order in the Universe as well as the small-scale quantum randomness. 

 

13. There are an infinite number of ways to describe each universe 

There are usually many ways to formulate a mathematics problem.  In the same way, there are 

many ways to formulate a universe.  A universe could be a direct simulation of some laws in A of 

the universe’s physics, or a simulation of a cellular automaton, programmed to follow the laws in 

A. One of the easiest to consider is using recursive simulations. No matter what computation a 

simulation performs, it is always possible to form a larger simulation, simulating the first 

simulation.  This can be repeated ad infinitum, giving an infinite number of ways to simulate the 

same universe. Our Universe may be a toy simulation within a much larger universe, itself a 

simulation containing a giant child watching a rendering of our Universe.  One can use recursion 

with Turing machines, programming a universal Turing machine within another universal Turing 

machine.  They are all just computations, or equivalently solutions to some mathematics 

equations.  The challenge for scientists is to find the simplest set of rules, which formulate our 

particular Universe.  Wolfram (2002) has been searching the space of simple cellular automata 

looking for ones that might match the workings of our Universe.  Once you reach a sufficiently 

complex cellular automaton that can implement a Universal Turing Machine, then you need go 

no further because that automaton can compute the computations of all other cellular 

automatons. Chaitin (1999) concludes that we cannot know if we have found the simplest 

mathematical representation. Therefore, if we find a set of rules A for our Universe, we cannot 

know if this is the simplest set possible. The conjecture described here, explains the existence of 

this Universe and all others, but it may not be the only way, nor the simplest way. 

 

14: Why is the Universe like it is? 

The anthropic principle explains why our Universe is the way it is. We are simply in this one and 

on this quantum split branch per the Everett interpretation. A consequence of the conjecture I 

have presented is that an infinite number of universes exist in exactly the same way as ours does. 

Basically, we are very lucky to be in a universe where the laws governing it are stable over many 

billions of years and light years, and to be in a universe in which the particular laws governing it 

offer the opportunity for life to eventually evolve over those billions of years, on a suitable 

planet like Earth.  

 

Evolution can be defined simply as “that which is best suited to survive, does.” Using this 

definition, it is essentially a tautology. The forward direction of time is really set by evolution 

along a space-time dimension. The second law of thermodynamics drives everything, on 

average, to higher entropy. The exception is life, which can be defined as that which consumes 

energy to decrease entropy. In our Universe, the first things to evolve seem to have been the 

subatomic particles.  They quite quickly evolved to form stable configurations of atomic nuclei. 

These further evolved to more massive forms giving atoms of heavier elements through the 

actions of stars. Atoms combined to form molecules. Under the correct conditions, atoms formed 

amino acids and other building blocks of primitive life. The building blocks eventually produced 

molecular machinery for self-duplication. Information copying was born. This eventually 

evolved into the life forms we know today based on the information packets called DNA.  DNA 

is the information needed to construct beings, which consume energy and replicate the DNA. 

Evolution continues as massive organizations of people become more dependent on the 
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organization and through greater communication and technological advances will eventually take 

the evolutionary process up a notch when it becomes possible to copy and enhance intelligence. 

The life forms able to copy intelligence will advance much more rapidly using intelligence to 

drive evolution, and will probably think of us humans as we do our pets.   

 

On Earth, life as we know it is doomed to not last more than several billion years. The star 

driving our life will eventually expand, baking us and then cool down, freezing any remaining 

life. It seems that it is neither energetically possible nor economical for humans to travel to other 

stars. Our evolutionary successors may be able to, however. 

 

This is all possible because the rules in assumption A create a rich environment conducive to this 

kind of evolution. It is easy to come up with rules that do nothing interesting. Intelligent beings, 

like us, could not exist in an uninteresting universe, nor be there to contemplate our own 

existence. 

 

15: Is there free will? 

Daniel Dennet (2003) and many others have written volumes on the subject of “free will” or 

indeterminism. When we realize that the universe is probably deterministic, people often cannot 

reconcile that with their need to think they have “free will,” and are usually quite disturbed by 

the thought that decisions they make are mathematically determined in advance.  The problem 

lies in the ability to ask undecidable questions and pose irreducible problems, features which 

appear in sufficiently interesting mathematical systems.  

 

Consciousness is not yet fully understood.  However, our decisions are based on our 

environmental (including our body) inputs, our memories, possibly and controversially quantum 

events, and our brains ability to process these and act or not act on them.  Our consciousness is 

the additional ability for us to observe ourselves live and make our decisions, to the extent we 

can.  Our observation of ourselves contributes to the decision process.  The process is 

sufficiently complex that it is often irreducible and unpredictable by us, short of just seeing what 

we do.  The decisions feel like they are being made by us and they are, per the rules that govern 

the physics of our brains, bodies, and our surroundings.   We have a feedback mechanism which 

lets us observe what we decide, reverse our decision, reverse it again, continue this until we tire 

or choose something seemingly at random, just to disprove a prediction being made by another.  

 

“Free will” is actually an ill-defined concept.  There is no experiment that can be performed to 

test for “free will.”  Is “free will” the ability to make random decisions?  If so, are we really 

making a decision or just throwing dice or obeying a quantum event and letting something else 

make the decision? Would we ever knowingly overdraw our credit card if we knew the 

consequences were much worse than our current situation? We might, if we thought we could get 

away with it or if we are in a state of mind in which we don’t care about the future. Even though 

we think we have the free will to overspend our credit card, would we actually do it? What if the 

act were something much more severe or fatal? What if the act were to decide whether to put our 

pencil down on the left side or right side of the table? Would we take the high road or the low 

road? In all cases, we come to some decision about what to do or not do. The truth is that what 

we will do is not totally predictable by others or us. Only a complete simulation of our bodies, 

our brains, and our environment, considering the smallest possible influencing factors, could 
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predict what we would do. This, of course, would be a totally impossible task for us and thus we 

are likely to describe unpredictable behavior as “free will.”  

 

Some argue that free will is an illusion or a lack of understanding how we think. It is difficult to 

test to see if a person would make the same decision every time in a certain circumstance 

because part of the circumstance is your memory of what you chose before. Using severe 

Alzheimer’s patients is the closest we can come to testing this. These patients do seem to exhibit 

repeated behavior suggesting there might not be any randomness to our “free will.” Are we in 

fact able to make any decision totally without evaluating any prior knowledge, the current 

situation, and external inputs?   

 

Except for the seemingly random probabilities involved in quantum events, the Universe seems 

to be quite deterministic. Let’s suppose our brains did possess the ability to detect quantum 

events and to use them to make seemingly random decisions.  Hugh Everett (1957) suggests that 

our Universe splits into separate universes at every probabilistic quantum decision point. This 

would be multiplied by every possible quantum event at every point in the Universe. This creates 

large and possibly infinite number of branches from every space-time point. We happen to be 

here together on this path of branches back to the start, if there is a start. However, from every 

instant on, copies of us diverge into different universes where the consequences of different 

quantum events are played out. If our brains use quantum events to decide things, there will be 

one set of copies of us that go off on one set of universe branches that had us taking the high 

road and another set of copies taking the low road. The branches may be forever separated so we 

would never know what happens to those copies of us taking the other decision paths. So it may 

be that all decisions are being taken somewhere, but we just happen to be the result of an infinity 

of particular prior decisions and random quantum event outcomes. 

 

There may be unobservable factors driving this Universe. The characters in a simulation game 

may not have any tools or access to determine on what kind of computer their simulation is 

running. Similarly, we only have the particles we understand to work with, to probe the workings 

of our Universe. Imagine if we were weightless in a region of outer space in which there were no 

light, just Ping-Pong balls. And, imagine if we ourselves were constructed out of Ping-Pong 

balls. Our only method of detecting another Ping-Pong ball is to throw one and catch it on a 

bounce. That would be very analogous to us probing particles in our Universe using other 

particles. Our accuracy would be roughly limited to the size of the ping-pong balls. We may 

never be able to tell that the Ping-Pong balls are hollow, or might never tell what they are made 

out of because we could not reach energies required to break them into pieces. This is why 

physicists need to build more and more powerful particle accelerators. They need to break their 

Ping-Pong balls before they can understand what they are and that there may be a limit to how 

finely subdivided a Ping-Pong ball or particle can be.  If these unobservable factors introduce 

randomness in our choices, some might perceive this as “free will.” 

 

16. How can a mathematics equation build something as rich and beautiful as this 

Universe? 

The number π is quite complicated. Any radix notation of π does not repeat and it is presumed to 

be normal (digits are randomly distributed). In it you can find all of the works of Shakespeare 

(and all books for that matter) coded as ASCII computer characters, an infinite number of times. 
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You can find all nonsense encoded in it as well. A very simple concept of dividing the 

circumference of a circle by its diameter produces this interesting number.   

 

However, a list of integers will eventually reveal the works of Shakespeare too. There are many 

ways to start with simple rules and produce extreme complexity. This can be demonstrated by 

computer programs, cellular automata, and chaotic systems, just to name a few. For example, the 

Mandelbrot (1983) set is one such interesting example. The set consists of all of the points 0z  in 

a complex plane which never diverge [ nzn ∀≤ 2 ] with repeated application of the formula: 

1-
2

1 nn zz =
+ . This very simple equation implemented as a simple computer program can draw 

the intricate and beautiful “hillsides” just outside the Mandelbrot set. These hillsides can be 

drawn by drawing points with a color and altitude as a function of how many iterations of the 

formula it took to discover the point was not in the set. The Mandelbrot set is symmetrical about 

the horizontal axis, yet infinitely complicated as one looks at it in greater and greater detail at the 

edges. It produces beautiful pictures with infinite variations, yet repeating fractal similarities. As 

Wolfram notes, such computations are irreducible. There is no shorter way to render the results 

and that is why they are complicated and seemingly unpredictable to us.  

 

What I am saying is that what we see here, as our Universe, is a tiny part of a very complex 

mathematical computation, a simulation of our Universe, which is much like the fractal 

Mandelbrot set, but much more rich, complicated, interesting, and beautiful.  We exist in some 

far corner of mathematics that we may never fully understand.  And, there are other universes, in 

farther corners, perhaps many times more interesting than ours. 

 

The Universe is beautiful to us because we have evolved in this one to best fit with our 

environment on Earth. This Universe is important to us. It is built on a set of laws that permitted 

a rich evolution of life on Earth in this galaxy and most probably in many other planets and 

galaxies. We are important to our family and friends and we have evolved to thrive here, for the 

time being. Other universes are difficult for us to imagine. The size of the computation required 

to render our Universe is difficult to imagine.  
80010 computation time steps may be sufficient to 

render our Universe up to this point in time, but even this is a small number compared to infinity. 

We have no conception of how large and powerful the infinity of mathematics really is. We 

might say, mathematics is not just the “Queen of Science,” it is the “Mother of All Universes.”   

 

People have a difficult time appreciating the magnitude of infinity. Despite overwhelming 

evidence supporting the theory of evolution, many people cannot fathom the large number of 

steps, via trial and error over the Earth’s approximately 4 billion year history, required to evolve 

intelligent humans.  Moreover, we must have a more difficult time understanding numbers like 
200010  and greater, when considering a many worlds simulation, that may be involved in 

describing this Universe.  Yet, these numbers are still finite and small compared to infinity.  

Nature may be going much farther, perhaps all the way to infinity, to run the Universe. 

 

17. “Why is there something instead of nothing?” – Leibniz 

With a mathematical existence argument, an infinite number of universes cannot help but exist.  

And at the same time, there need be no ultimate physical existence of anything, in the sense that 

Leibniz considered. However, understanding the arguments in this paper, we realize we can 
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achieve what feels like physical existence with purely mathematical existence, and avoid the 

problem of having to explain the physical existence of just one Universe. 

 

18. Conclusion 

The conjecture I have presented is based essentially on a set of self-evident arguments: 

1. Mathematics exists independent of any universe or discovering practitioner. 

2. Mathematics can describe an entire universe via a simulation, or a mathematical 

simulation is a universe. 

3. Viewpoint matters: The description of a universe is static to an outside observer, but 

may be dynamic to an inside observer (also depending on the kind of universe). 

4. A causal structure in a universe can create the illusions of motion and time. 

5. Evolution at all levels can create very interesting emergent results, such as intelligent 

life, in a sufficiently rich universe with relatively stable properties. 

6. The multiplicative quantum results and anthropic principle explain our Universe’s  

lack of physical symmetry. 

7. There are an infinite number of universes within mathematics.  In fact all equations 

can be thought of as universes, but many are uninteresting.   

8. All describable universes exist somewhere within mathematics. 
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FOOTNOTE 

 

1. Achieving determinism with a conventional computer would require compensating for any timing considerations 

such as the spinning of disk platters, seeking of disk heads, timing of external interrupts and any other asynchronous 

events. 
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